首页  学院概况  教师队伍  学科建设与研究生教育  科研平台  教育教学  实验实训  招生就业  工程认证  党建工作  学生工作 
教师队伍
 教师概况 
 高层次教师 
 教授 
 博士 
 教师简介 
教师队伍
您的位置: 首页>教师队伍>正文
张绍泉-硕士生导师
2023-03-24 16:05  

导师简介表

 

张绍泉

 

     undefined 

 

出生日期

199009

政治面貌

中共党员

 

5

 

博士研究生

 

博士

现任职务


技术职称

教授

办公电话


通信地址

南昌市高新区天祥大道289

 

330099

Email

zhangshaoquan1@163.com

学习及工作经历:

教育经历:

(1) 2015-08 — 2018-06, 中山大学, 地图学与地理信息系统, 博士

(2) 2012-09 — 2015-01, 南昌工程学院, 动力工程, 硕士

(3) 2008-09 — 2012-06, 南昌工程学院, 通信工程, 学士

工作经历:

(1) 2021-10 — 至今, 南昌工程学院, 信息工程学院, 副教授

(2) 2018-08 — 2021-10, 南昌工程学院, 信息工程学院, 副教授(校聘)

主要研究方向:

高光谱遥感图像处理与应用、模式识别与智能信息处理、机器学习、深度学习

主要讲授课程:

《数字图像处理》电子创新设计、《互联网+创新创业指导》

主持的主要科研项目:

[1] 国家自然科学基金项目:端元光谱库自适应更新的空谱深度稀疏回归高光谱图像解混 (编号:61901208),在研,经费:27万元,主持.

[2] 国防基础科研计划项目高光谱影像数据中水下目标探测技术研究 (编号:WDZC20205500204)在研经费:30万元,主持.

[3] 江西省主要学科学术和技术带头人培养计划--青年人才项目:非线性效应高光谱遥感图像深度张量解混研究 (编号:20225BCJ23019),在研经费:50万元,主持.

[4] 中国博士后科学基金面上项目:联合空谱信息的高光谱图像深度网络稀疏解混 (编号:2020M672483),在研经费:8万元,主持.

[5] 江西省自然科学基金面上项目深度自编码器端元可变高光谱图像非线性解混研究 (编号:20224BAB202007)在研,经费:10万元,主持.

[6] 江西省自然科学基金青年项目空谱加权稀疏深度网络高光谱图像解混 (编号:20192BAB217003)完成,经费:6万元,主持.

[7] 江西省教育厅科技项目基于深度学习的高光谱图像混合像元分解 (编号:GJJ180962),完成,经费:5万元,主持.

[8] 横向项目:面向建筑工程精细化自动识别系统开发及应用示范课题, (编号:[2021]-KJ059)在研,经费:40万元主持,

以第一作者和通讯作者发表论文列表:

[1] Shaoquan Zhang, Jun Li*, Heng-Chao Li*, Chengzhi Deng and Antonio Plaza. Spectral-Spatial Weighted Sparse Regression for Hyperspectral Image Unmixing. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3265-3276. (SCI一区,Top期刊,IF:8.125)

[2] Shaoquan Zhang, Alexander Agathos, Jun Li*. Robust Minimum Volume Simplex Analysis for Hyperspectral Unmixing. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6431-6439. (SCI一区,Top期刊,IF:8.125)

[3] Shaoquan Zhang, Jun Li*, Zebin Wu, Antonio Plaza. Spatial Discontinuity-Weighted Sparse Unmixing of Hyperspectral Images. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5767-5779. (SCI一区,Top期刊,IF:8.125)

[4] Shaoquan Zhang, Guorong Zhang, Fan Li, Chengzhi Deng*, Shengqian Wang*, Antonio Plaza and Jun Li. Spectral-Spatial Hyperspectral Unmixing Using Nonnegative Matrix Factorization. IEEE Transactions on Geoscience and Remote Sensing, 2022. vol. 60, pp. 1-13, Art no. 5505713 (SCI一区,Top期刊,IF:8.125)

[5] Shaoquan Zhang, Jun Li, Kai Liu*, Chengzhi Deng, Lin Liu, Antonio Plaza. Hyperspectral Unmixing Based on Local Collaborative Sparse Regression. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 631-635. (SCI二区,权威期刊,IF:5.343) 

[6] Fan Li, Shaoquan Zhang*, Bingkun Liang, Chengzhi Deng*, Chenguang Xu and Shengqian Wang. Hyperspectral Sparse Unmixing With Spectral-Spatial Low-Rank Constraint[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6119-6130. (SCI二区,权威期刊,IF:4.715) 

[7] Fan Li, Shaoquan Zhang*, Chengzhi Deng, Bingkun Liang, Jingjing Cao and Shengqian Wang*. Robust Double Spatial Regularization Sparse Hyperspectral Unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 12569-12582. (SCI二区,权威期刊,IF:4.715) 

[8] Lianhui Liang, Shaoquan Zhang* and Jun Li. Multiscale DenseNet Meets with Bi-RNN for Hyperspectral Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 5401-5415. (SCI二区,权威期刊,IF:4.715)

[9] Yan Li, Shaoquan Zhang*, Chengzhi Deng*, Shengqian Wang. Reweighted Local Collaborative Sparse Regression for Hyperspectral Unmixing. Infrared Physics & Technology, 2019, 97: 277-286. (SCI二区IF: 2.997)

[10] Chenguang Xu, Zhaoming Wu, Fan Li, Shaoquan Zhang*; Chengzhi Deng*, Yuanyun Wang. Spectral-Spatial Joint Sparsity Unmixing of Hyperspectral Images based on Framelet Transform, Infrared Physics & Technology, 2021, 112(103564)1-17. (SCI二区,IF: 2.997)

[11] 张绍泉,黄志浩,邓承志*,李璠,徐晨光,吴朝明,汪胜前. 光谱加权协同稀疏和全变差正则化高光谱图像解混. 电子学报2020, 48(12): 2453-2461. (EI,国内一级学报)

[12] 梁联晖, 李军, 张绍泉*. 基于3D Octave卷积和Bi-RNN注意力网络的高光谱图像分类方法[J]. 光子学报, 2021, 50 (9): 284-296. (EI)

[13] Shaoquan Zhang, Jun Li*, Javier Plaza, Heng-Chao Li, Antonio Plaza. Spatial Weighted Sparse Regression for Hyperspectral Image Unmixing. IEEE International Geoscience and Remote Sensing Symposium, 2017: 225-228. (EI)

[14] Shaoquan Zhang, Jun Li*, Zebin Wu, Antonio Plaza. Sparse Hyperspectral Unmixing with Spatial Discontinuity Preservation. IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2016: 1-4. (EI)

[15] Shaoquan Zhang, Chengzhi Deng*, Jun Li, Shengqian Wang, Fan Li, Chenguang Xu, Antonio Plaza. Superpixel-Guided Sparse Unmixing for Remotely Sensed Hyperspectral Imagery. IEEE International Geoscience and Remote Sensing Symposium. 2019: 2155-2158. (EI)

[16] Shaoquan Zhang, Guorong Zhang, Chengzhi Deng*, Jun Li, Shengqian Wang, Jun Wang, Antonio Plaza. Spectral-spatial Weighted Sparse Nonnegative Tensor Factorization for Hyperspectral Unmixing. IEEE International Geoscience and Remote Sensing Symposium. 2020: 2177-2180. (EI)

[17] Fan Li, Bingkun Liang, Shaoquan Zhang*, Chengzhi Deng, Zhaoming Wu and Shengqian Wang, Superpixel Based Low-Rank Sparse Unmixing for Hyperspectral Remote Sensing Image, IEEE International Geoscience and Remote Sensing Symposium, 2021: 3853-3856. (EI)

[18] Lianhui Liang, Shaoquan Zhang*, Jun Li, Zhi Cui. Hyperspectral Image Classification Via Double-branch Multi-scale Spectral-spatial Convolution Network. IEEE International Geoscience and Remote Sensing Symposium, 2022, 3588-3591. (EI)

[19] Lianhui Liang, Jun Li, Shaoquan Zhang*. Hyperspectral Image Classification Method Based on Multi-scale Densenet and Bi-RNN Joint Network. IOP Conference Series: Earth and Environmental Science, 2021, 783(1), 012087. (EI)

[20] Yueshuai Shan, Shaoquan Zhang*, Shanqi Hong, Fan Li, Chengzhi Deng, Shengqian Wang. Cascaded Autoencoders for Spectral-spatial Remotely Sensed Hyperspectral Imagery Unmixing. IEEE International Geoscience and Remote Sensing Symposium, 2022, 3271-3274. (EI)

专著及发明专利:

专著章节

[1] Shaoquan Zhang (张绍泉), Yuanchao Su, Xiang Xu, Jun Li, Chengzhi Deng and Antonio Plaza. Recent Advances in Hyperspectral Unmixing Using Sparse Techniques and Deep Learning, in Hyperspectral Image Analysis: Advances in Machine Learning and Signal Processing. Edited by S. Prasad and J. Chanussot, Springer, 2020, ISBN: 978-3-030-38616-0, pp. 377-406. 

已授权的发明专利

[1] 发明专利: 基于深度学习的显微视觉伺服控制方法. 邓承志吴朝明; 田伟; 张绍泉; 徐晨光; 李璠; 张俊; 汪胜前. 专利号: ZL. 201910168809.8; 授权公告日:20221122

[2] 发明专利:一种具有目标跟踪功能的监控装置王员云; 邓承志; 徐晨光; 王军; 张俊; 张绍泉; 吴朝明; 李璠; 汪胜前. 专利号: ZL. 202011316439.7; 授权公告日:2023224

[3] 发明专利:基于增强学习的视觉机器人运动控制方法. 吴朝明徐晨光; 李璠; 田伟; 张绍泉; 王军; 汪胜前; 邓承志. 专利号: ZL. 201910169395.0; 授权公告日:20221122

学生培养:

指导全日制硕士研究生十余名指导学生在高光谱遥感图像处理等领域取得了多项研究成果,IEEE TGRSIEEE JSTARSIEEE IGARSS、电子学报等知名学术期刊或会议上发表论文十余篇,指导学生立项4省级研究生创新创业专项项目,指导的研究生获得多个国内外学术活动和科技竞赛的重要奖项1考入武汉大学攻读博士学位。培养的毕业生任职于中科院空天信息研究院、国家电网、网易、中国航天十院等知名企事业单位。

:可根据个人情况适当删减或增加条目

 

 


关闭窗口
 
访问量人数:

 

南昌工程学院 版权所有